
Journal of Computational Information Systems 9: 17 (2013) 6937–6944
Available at http://www.Jofcis.com

Implementation of Parallel Computing FAST Algorithm

on Mobile GPU

Chienhsing CHOU∗, Peter LIU, Taiyi WU, Yihsiang CHIEN

Department of Electrical Engineering, Tamkang University, New Taipei City, Taiwan

Abstract

Corner detection is an extremely important technique in image recognition, which is widely employed in
various applications for image recognition. With the widespread use of mobile devices, image recognition
techniques are frequently applied in such devices. However, the hardware resource of smartphones is
lacked and restricted, it is a difficult task to apply the techniques of corner detection smoothly in these
devices. To enhance the computational speed, the FAST corner detection algorithm is implemented with
parallel computing of GPU in mobile devices. In the experiments, the computational speed of the FAST
corner detection algorithm increases 24 times after using GPU parallel computing. Compared with the
widely known SURF algorithm, which is computed with mobile CPU only, the proposed technique in
this study is 468 times faster than SURF algorithm.

Keywords: FAST Algorithm; GPU; Corner Detection; Mobile Device; SURF

1 Introduction

Corner detection is an extremely important technique in image recognition, which is widely em-
ployed in various applications for image recognition. Corner detection is applied to applications
including 3D reconstruction [1], object recognition [2], image mosaicing [3], and motion estimation
[4], etc. Since the debut of the iPhone in 2008, smartphones have become necessary products in
the lives of many people. Because smartphone characteristics are portable and practical, more
and more image recognition applications are appearing in these devices. Examples include using
facial recognition to unlock the smartphone; combining augmented reality with image recognition
in applications [5], using auto-stitching to merge multiple images into one [6]-[8], and using seam
carving to adjust image sizes [9]-[11]. However, the hardware resource of smartphones is lacked
and restricted, it is a difficult task to apply these recognition techniques smoothly in these devices.

To solve the above problem, the most straightforward solution is to employ GPU to assist
the computation of the image recognition applications. In the latest version of the well-known
open source computer vision library (OpenCV), part of the program already uses GPU to perform

∗Corresponding author.
Email address: chchou@mail.tku.edu.tw (Chienhsing CHOU).

1553–9105 / Copyright © 2013 Binary Information Press
DOI: 10.12733/jcis6666
September 1, 2013



6938 C. Chou et al. /Journal of Computational Information Systems 9: 17 (2013) 6937–6944

computations. Most methods employ CUDA[12] to execute numerous computations in GPUs[13]-
[14]. However, these CUDA accelerated methods are only suitable for the latest NVIDIA graphics
chips, can only run on standard PC platforms, and have no support for current mobile devices.
In addition, the GPU inside smartphones may not use NVIDIA graphics chip, this also hinders
researchers to transfer their research techniques to smartphones.

In order to enhance the computational speed during detecting corners, the FAST algorithm [15]
is chosen as the corner detection method to detect corners in an image, because it requires fewer
computations. Then this study implements the FAST algorithm in mobile devices by employing
GPGPU technique to control GPUs. In the Section 2 of this study, we introduce GPUs and
the FAST algorithm. In Section 3, we explain how to use the parallel processing characteristics
of GPUs to implement the FAST algorithm. During the experiment in Section 4, we compare
the method proposed in this study with other available methods. In Section 5, we present our
conclusions.

2 Introduction to GPUs and the FAST Algorithm

2.1 Graphics processing units

In 1990, graphics processing units (GPUs) were employed to assist in the drawing of 2D images,
such as for line drawing, tile rendering, and VCD/DVD playing acceleration. By the end of the
1990s, they were used in 3D accelerations. Around 2000, many affordable 3D acceleration display
cards emerged in the market for 3D rendering. These 3D display cards reduce the computational
loading for the central processing unit (CPU) while rendering 3D graphics. Before the existence
of GPUs, all rendering computations were processed by the CPU. However, with GPU support,
much of the computational load is now shared, increasing the efficiency of 2D and 3D image
rendering for users.

The hardware architecture of GPUs is a multi-core CPU, with up to hundreds of cores. Because
most of the pixels in the image are rendered independently, no sequential relationships typically
exist between pixels. Thus, if a GPU contains 32 processing units, theoretically, the speed of
rendering a single image might be 32 times faster than that of a single core CPU. Figure 1 is the
architecture of CPU and GPU [16].

Fig. 1: The architecture of CPU and GPU [16].

Originally, GPUs were designed to render 3D graphics rather than to assist the computational
tasks of variety image processing. However, in recent years, many researchers have used GPUs



C. Chou et al. /Journal of Computational Information Systems 9: 17 (2013) 6937–6944 6939

on PC platforms to perform computations involving convolution, RGB-grayscale conversion, and
Gaussian blurring to save significant amounts of time. For most researches, these image processing
techniques were implemented by using the CUDA programming language. However, CUDA
programming language cannot be directly applied on mobile devices; in this study, we used the
general purpose GPU (GPGPU) technique [17] to control the tasks of GPUs in mobile devices.

2.2 FAST corner detection algorithm

The FAST corner detection algorithm was proposed by Edward Rosten [15]. Compared with
several corner detection algorithms, the FAST algorithm requires fewer computational load while
detection corner points in an image. The computational methods of the FAST algorithm is
described as following (see Fig. 2 and Eq. (1)), more details can be found in [15].

Sp → X =


d, Ip → x ≤ Ip − t (dar ker)

s, Ip − t < Ip → x < Ip + t (similar)

b, Ip + t ≤ Ip → x (brighter)

Fig. 2: The computational methods of the FAST algorithm [15].

Because the FAST algorithm offers the advantage of requiring few computations to detect
corners, it is suitable for situations requiring real-time processing, such as extracting corner
points from a video in real time. Furthermore, it is also suitable to be applied in mobile devices
with limited computational resources.

3 The Research Method Combining GPUs and the FAST

Algorithm

Currently, the graphics application programming interfaces (APIs) in mobile devices mainly use
OpenGL Shading Language (GLSL) [18] from OpenGL ES 2.0. This graphics API is a high-level
shading language based on the syntax of the C programming language. It provides the developer
with more direct control of the graphics pipeline. Because of the development of this standard,
modern 3D graphics can draw astonishing scenes that appear almost real. In this study, the
GLSL is the main tool to implement the FAST algorithm by using GPUs.



6940 C. Chou et al. /Journal of Computational Information Systems 9: 17 (2013) 6937–6944

This proposed technique comprises two stages (as shown in Fig. 3). The first stage is that
convert the image pixels from RGB color space to grayscale, and then execute the FAST algorithm
to detect corner point in the second stage. During both stages, the GPU is controlled by using
GPGPU technique. The grayscale converting and FAST algorithm computations are conducted
using parallel computing. To the best of our knowledge, no other researcher has used GPU in
mobile platforms to perform the FAST algorithm. This is the main contribution of this study.
The testing program is also available on our website for interested researchers to download and
test [19].

 

Input a test image 

Convert image pixels from RGB color space to grayscale by using GPU 

 

 Execute FAST algorithm for each pixel by using GPU 

Fig. 3: Flowchart of using GPU to conduct the computations of grayscale converting and the FAST
algorithm.

When developing the proposed method, the GLSL tool (Render Monkey) of PC could not be
easily employed for testing, because of the differences in the specifications for mobile devices
and desktop PCs. Therefore, the development procedure and debugging only relies the return
messages from OpenGL, and the majority of the execution errors were solved through guesswork.
This greatly increased the difficulty of development. In addition, because GPU needs convert
RGB values from integers range (0∼255) to float-point range (0∼1.0), the conversion process
resulted in some slight errors in the RGB values. Fortunately, the slight deviation has minimal
effect on the overall results.

4 Experimental Results

The test image used for the experiment was Lena (Fig. 4). Because of the experiment require-
ments, this test image was stored in four sizes, namely, 512×512, 1024×1024, 1536×1536, and
2048×2048. The tested mobile device platforms were the iPhone 3GS and iPhone 4. Because
of the limited memory in the mobile device, the largest image size during the experiments is
2048×2048. We conducted three experiments in total. The first experiment compared the com-
putational speed of the FAST algorithm, which is executed with GPU acceleration, on various
hardware platforms. The second experiment compared the computational speed of three corner
detection methods. During the third experiment, we tested the computational speed using various
images.

(1) Experiment 1:

For the first experiment, we used an iPhone 3GS and iPhone 4 as the test platforms to compare
the computational speed of the FAST algorithm after GPU acceleration. Table 1 shows the



C. Chou et al. /Journal of Computational Information Systems 9: 17 (2013) 6937–6944 6941

Fig. 4: The test image Lena

Table 1: The hardware specifications of the iPhone3GS and iPhone4.

iPhone 3GS iPhone 4

CPU ARM Cortex-A8
833 MHz

Apple A4
1 GHz

Graphics PowerVR SGX535 GPU

Memory 256 MB DRAM 512 MB DRAM

hardware specifications of the iPhone 3GS and iPhone 4. The iPhone 4 has a faster CPU and
more memory; however, both devices use the same graphics chip. For this experiment, we used
four sizes of test images. The computational times are shown in Table 2. Based on the data in
Table 2, we summarized the following two points:

1. Although the iPhone 4 is superior to the iPhone 3GS for certain hardware specifications, the
computational time of FAST algorithm conducted by GPUs was almost the same because
of the identical graphics chip used.

2. The required computation time did not increase linearly with increases in image size. For
example, when the image size increased from 1024×1024 to 2048×2048, although four times
as many pixels were used, the computational time was only 1.8 times longer. These result
further validated the benefits of using GPU parallel computing.

(2) Experiment 2:

During this experiment, we compared the time required to compute the FAST algorithm using
a GPU (FAST-GPU) or without (FAST-CPU). In addition, another well-known corner detection
algorithm SURF (using CPU) was also compared. The experimental data are shown in Table 3.

Table 2: Experimental results of the iPhone 3GS and iPhone 4.

Image Size iPhone 3GS (ms) iPhone 4 (ms)

512x512 64 64

1024x1024 81 81

1536x1536 113 114

2048x2048 147 146



6942 C. Chou et al. /Journal of Computational Information Systems 9: 17 (2013) 6937–6944

Table 3: Experimental results of three corner detection algorithms.

Image-Size FAST-GPU
(ms)

FAST-CPU
(ms)

SURF-CPU (m-
s)

512x512 64 201 3,452

1024x1024 81 848 15,128

1536x1536 114 1,877 36,301

2048x2048 146 3,509 68,271

Figure 5 shows the experimental results of the three corner detection methods. From the data in
Table 3, we summarized the following three points:

1. When the image size is 512×512, computational speed of the FAST algorithm using a
GPU is three times faster than that without using a GPU. Compared with SURF, it is
54 times faster. When the image size is increased to 2048×2048, computational speed of
the FAST algorithm increases by 24 times after using a GPU. Compared with SURF, the
computational speed differ by as much as 468 times.

2. With the two CPU only methods, increases in image size are accompanied by linear increases
in the required computation time. This indicates that parallel computing using GPUs is
more effective for increasing speed when using larger images.

3. Two main reasons lead to the long computation time for SURF algorithm. One is that
the SURF algorithm is complex. The other is that when SURF algorithm uses the CPU
for computations, the OS of mobile must continuously reallocate memory because of the
limited memory of mobile devices, resulting in additional computation time.

(a) (b) (c)

Fig. 5: The results of corner detection after using (a) FAST-GPU; (b) FAST-CPU; (c) SURF-CPU

(3) Experiment 3:

For this experiment, we used various images to assess our proposed methods. Figure 6 shows
the five test images used in this experiment [17]. Table 4 lists the average time required to process
these images using FAST-GPU. By comparing the experimental data in Table 3, we found that
no significant differences in computation times existed. This also indicates that our method is
not affected by various test images.



C. Chou et al. /Journal of Computational Information Systems 9: 17 (2013) 6937–6944 6943

(a) (b) (c)

(d) (e)

Fig. 6: The results of corner detection after using (a) FAST-GPU; (b) FAST-CPU; (c) SURF-CPU

Table 4: The average time for processing five test images by using FAST-GPU.

Image-Size FAST-GPU (ms)

512x512 64

1024x1024 81

1536x1536 114

2048x2048 147

5 Conclusions

To increase the computational speed of corner detection on mobile devices, we used the GPGPU
method to control GPUs in this study. Through parallel computing, we implemented the FAST
corner detection algorithm in mobile devices. The parallel computing characteristic of GPUs
enabled us to increase the computational speed by 24 times. Compared with the well-known
SURF algorithm, the speed of our proposed method was 468 times faster. In addition, our
method performed satisfactorily both when processing different images and when using different
mobile devices. The testing program is also available on our website for interested researchers to
download and test [19].

References

[1] M. Pollefeys, R. K. M. Vergauwen, L. V. Gool, Automated reconstruction of 3D scenes from
sequences of images, ISPRS Journal of Photogrammetry and Remote Sensing 55 (2000) 251-267.

[2] D. G. Lowe, Object recognition from local scale-invariant features, in: Proceedings of IEEE Inter-



6944 C. Chou et al. /Journal of Computational Information Systems 9: 17 (2013) 6937–6944

national Conference on Computer Vision, 2, 1999, pp. 1150-1157.

[3] P. F. McLauchlan, A. Jaenicke, Image mosaicing using sequential bundle adjustment, Image and
Vision Computing, 20 (2002) 751–759.

[4] H. Wang, M. Brady, Real-time corner detection algorithm for motion estimation, Image and Vision
Computing, 13 (1995) 695-703.

[5] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen, T. Bismpigiannis, R. Grzeszczuk,
K. Pulli, B. Girod, Outdoors augmented reality on mobile phone using loxel-based visual feature
organization, in: Proceeding of the ACM international conference on Multimedia information
retrieval, 2008, pp. 427-434.

[6] M. Brown, D. Lowe, Automatic Panoramic Image Stitching using Invariant Features, International
Journal of Computer Vision, 74 (2007) 59-73.

[7] M. Brown, D. G. Lowe, Recognising Panoramas, in: Proceedings of the 9th International Confer-
ence on Computer Vision (ICCV2003), 2003, pp. 1218-1225.

[8] iPhone App: Autostitch, http://www.cloudburstresearch.com/autostitch/autostitch.html.

[9] S. Avidan, A. Shamir, Seam Carving for Content-Aware Image Resizing, in: Proceedings of SIG-
GRAPH 2007, 10, 20073.

[10] M. Rubinstein, A. Shamir, S. Avidan, Improved Seam Carving for Video Retargeting, in: Pro-
ceedings of SIGGRAPH 2008, 16, 2008.

[11] iPhone App: Liquidscale, http://www.savoysoftware.com/liquidscale/.

[12] CUDA, http://developer.nvidia.com/object/cuda.html.

[13] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, W. W. Hwu, Optimiza-
tion principles and application performance evaluation of a multithreaded GPU using CUDA, in
Proceedings of PPOPP 2008, 2008, pp. 73-82.

[14] Y. Sun, X. Sun, H. Zhang, Research on parallel cone-beam CT image reconstruction on CUDA-
Enabled GPU, in: Proceedings of IEEE International Conference on Image Processing, 2010, pp.
4501-4504.

[15] E. Rosten, T. Drummond, Machine learning for high-speed corner detection, in: Proceedings of
ECCV’06, 2006, pp. 430-443.

[16] GPU architecture, http://blog.goldenhelix.com/?p=374.

[17] P. Bui, J. Brockman, Performance analysis of accelerated image registration using GPGPU, in:
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, 2009,
pp. 38-45.

[18] Khronos Group, OpenGL ES 2.0 Specification, http://www.khronos.org/opengles.

[19] The testing program is available on our website: http://mail.tku.edu.tw/chchou/others/others.htm.


